混合动力汽车传动系统类型?_混合动力汽车传动系统
1.串联式和并联式混合动力电动汽车的驱动系统的区别
2.汽车动力驱动部分结构示意图
3.混动汽车变速器结构与原理(混动变速器数据流分析)
4.汽车传动的典型形式包括
串联式和并联式混合动力电动汽车的驱动系统的区别
混合动力汽车的系统包括发动机、电动机等动力装置,蓄电池等蓄能装置,变速器、减速器、万向传动器及传动轴等传动装置。
串联式混合动力电动汽车的基本驱动方式是电动机动,发动机/发电机组起辅助动力单元的作用。由此可见,发动机的功率应能满足汽车的起步、加速、爬坡等动力性能。因此,串联式混合动力汽车电动机功率的选择与纯电能驱动汽车电动机的选择方式类似。可根据汽车的最高车速、最大爬坡度以及最佳加速性能进行估算,并选择其中的最大值作为初选值。
图示为深圳陆地方舟公司油电混合动力客车
并联式混合电能驱动型汽车由发动机、电动机、电动机控制器、蓄电池组(或其它类型的动力电池)、动力合成器、机械传动装置等组成。如果蓄电池组可外插电网充电,则属于插电式并联混合动力型电能驱动汽车。发动机与电动机的输出轴分别与动力合成器输入端进行机械连接,输出动力通过动力合成器输出轴传递到机械传动装置(变速器、主减速器、差速器等),驱动车辆行驶。燃油箱与发动机之间是管路连接,电动机与电动机控制器、电动机控制器与蓄电池组之间均是电缆连接。
并联式混合动力汽车与串联式混合动力汽车的最大区别在于发动机与机械传动装置存在机械连接。
汽车动力驱动部分结构示意图
Prius混合动力汽车结构的核心部分是行星轮机构,丰田称之为动力分配装置(PSD,Power Split Device)。结构示意图如图1。
该行星轮系有两个自由度,在此结构中,发动机和行星架相联,通过行星齿轮将动力传递给外圈的齿圈和内圈的太阳轮,齿圈轴与电机和传动轴相联,太阳轮轴和发电机相联。PSD将发动机大约70%的转矩直接传递到驱动轴上,将另一部分转矩传送到发电机上,并且发电机、电机和发动机的转速存在一线性关系。在驱动轴转速(即电机转速)不变的情况下,通过调节发电机来调整发动机转速。同时,发动机和电机转矩可以直接叠加。但是结构上较为复杂,给制造和控制带来了一定的困难。
2 改进的混合动力传动系统设计
所提出的改进型设计是一种多工作运行模式的混合动力汽车,其动力传动系统示意图如图2所示。该驱动系统只采用1台电机,该电机既可以作为驱动电动机,又能作为充电和制动能量回收时的发电机使用。在该系统中,行星轮系的太阳轮与发动机相联,行星架与驱动车轮相联,电机通过锥齿轮副、电控离合器、齿轮副分别与行星架和齿圈相联。对于系统所采用的行星轮系,其各部分的运动学关系如下:
式中,Ns为太阳轮的转速;Nr为齿圈的转速;Nc为行星架的转速;K为齿圈和太阳轮的齿数比。
行星轮系传递的转矩关系为:
式中,Tr为齿圈上的转矩;Ts为太阳轮上的转矩;Tc为行星架上的转矩;K为齿圈和太阳轮的齿数比。
混动汽车变速器结构与原理(混动变速器数据流分析)
混合动力汽车变速机构结构和原理:丰田P410混合动力汽车的主动桥组件包括2号电机发电机(MG2)和1号电机发电机(MG1),采用带复合齿轮装置的无级变速器装置。该传动桥应用于丰田雷凌-卡罗拉双发动机、第7代凸轮混合动力、第3代普锐斯、雷克萨斯CT200H和ES300H等机型。该混合动力传动桥系统采用电子变速杆系统进行换挡控制。主动桥主要包括MG1、MG2、复合齿轮装置、变速器输入减振器总成、中间轴齿轮、减速齿轮、差动齿轮机构和油泵,组成部件如图3-82所示。06传动桥有三轴结构:复合齿轮装置、变速器输入减振器组件、油泵、MG1和MG2安装在输入轴上;中间轴从动齿轮和减速驱动齿轮安装在第二轴上;减速从动齿轮和差动齿轮机构安装在第三轴上;齿轮组的结构如图3-83所示。发动机、MG1和MG2通过复合齿轮装置机械连接。如图3-84所示,各行星齿轮与复合齿轮机构结合。复合齿轮装置包括动力分配行星齿轮机构和电动机减速行星齿轮机构,各行星齿圈与复合齿轮一体化。另外,该复合齿轮还集成了中间轴主动齿轮和停车齿轮。动力分配行星齿轮机构将发动机的动力分为两个:一个用于驱动车轮,另一个用于驱动MG1。因此,MG1可以用作发电机。为了降低MG2的转速,采用电机减速行星齿轮机构,将高转速、高功率的MG2优化为复合齿轮。该齿轮装置的结构如图3-85所示。4EL70是全自动后轮驱动变速器,包括电控连续可变电动变速器。它具有一个输入轴、三个静止式和两个旋转式摩擦离合器组件、一个液压增压和控制系统、一个电动油泵、三个行星齿轮组、两个电动驱动马达。其内部结构如图3-86所示,机械部件如图3-87所示。混合动力变速器故障分析:数据分析以比亚迪6HDT45变速器为例。变速器故障诊断必须始终从数据开始,常用数据主要包括:发动机转速、输入轴转速、离合器实际压力、执行器位置、执行器中位置等。以下是各主要数据的正常范围和故障的诊断:1.离合器实际压力通常在300-2800kPa之间。离合器处于分离状态时,离合器实际压力通常在300-500kPa之间;离合器处于接合状态时,离合器的实际压力通常在800kPa以上。离合器压力数据如图3-88所示。离合器压力在2800kPa以上,踩下油门踏板时,如果发动机转速急剧上升,车速上升变慢,可能是离合器打滑,离合器片烧损,所以需要更换离合器。离合器压力低于300kPa时,一般在行驶中会突然熄火或发生无动力输出故障。2.离合器折擦点一般在600-1000之间,如图3-89所示根据车辆使用情况变化。离合器打滑太小引起的故障现象一般有起步冲刺和换挡冲击。离合器打滑不好的话,起步会变慢,升档也会受挫。离合器折擦点过大或过小时,驾驶热车后操作离合器自适应,故障无法消除时更换离合器。3.执行机构中立位置即拨叉中立位置,执行机构1为1/3速叉,执行机构2为2/4速叉,执行机构3为5速叉,执行机构4为6/R档叉,执行机构致动器1、2、4、5都控制两个范围,因此一个中间位置处于n位置。致动器中位值范围如图3-90。中立值在对应范围外时,会发生齿轮级的齿牙、异常噪声或某个齿轮级的断齿等故障。4.执行机构的每个位置执行机构都有位置传感器,可感知执行机构的位置。正常情况下,执行元件位置传感器的值在-11~11毫米之间,超过11毫米时会发生错误,发生故障。执行机构位置传感器数据如图3-91所示。5.油泵信息HEV模式下P位、D位的数据流信息如图3-92及图3-93所示,在泵压为-1.38~21.8bar之间;电机的运行占空比为0%~100%;电机使能信息有效,禁止电机的转速为0~10000r/min。以上内容摘自《新能源汽车维修完全自学手册》。
汽车传动的典型形式包括
汽车传动的典型形式包括机械传动、静液传动、动液传动、混合动力。
传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。
功用
汽车发动机所发出的动力靠传动系传递到驱动车轮。传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。
种类组成
传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。
下面分别介绍小传动系各个分总成的工作原理以及作用:
离合器:离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。 离合器接合状态离合器切断状态 离合器的功用主要有:
保证汽车平稳起步:起步前汽车处于静止状态,如果发动机与变速箱是刚性连接的,一旦挂上档,汽车将由于突然接上动力突然前冲,不但会造成机件的损伤,而且驱动力也不足以克服汽车前冲产生的巨大惯性力,使发动机转速急剧下降而熄火。如果在起步时利用离合器暂时将发动机和变速箱分离,然后离合器逐渐接合,由于离合器的主动部分与从动部分之间存在着滑磨的现象,可以使离合器传出的扭矩由零逐渐增大,而汽车的驱动力也逐渐增大,从而让汽车平稳地起步。
便于换档:汽车行驶过程中,经常换用不同的变速箱档位,以适应不断变化的行驶条件。如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传力齿轮会因载荷没有卸除,其啮合齿面间的压力很大而难于分开。另一对待啮合齿轮会因二者圆周速度不等而难于啮合。即使强行进入啮合也会产生很大的齿端冲击,容易损坏机件。利用离合器使发动机和变速箱暂时分离后进行换档,则原来啮合的一对齿轮因载荷卸除,啮合面间的压力大大减小,就容易分开。而待啮合的另一对齿轮,由于主动齿轮与发动机分开后转动惯量很小,采用合适的换档动作就能使待啮合的齿轮圆周速度相等或接近相等,从而避免或减轻齿轮间的冲击。
防止传动系过载:汽车紧急制动时,车轮突然急剧降速,而与发动机相连的传动系由于旋转的惯性,仍保持原有转速,这往往会在传动系统中产生远大于发动机转矩的惯性矩,使传动系的零件容易损坏。由于离合器是靠磨擦力来传递转矩的,所以当传动系内载荷超过磨擦力所能传递的转矩时,离合器的主、从动部分就会自动打滑,因而起到了防止传动系过载的作用。
变速器:汽车变速器:通过改变传动比,改变发动机曲轴的转拒,适应在起步、加速、行驶以及克服各种道路阻碍等不同行驶条件下对驱动车轮牵引力及车速不同要求的需要。通俗上分为手动变速器(MT),自动变速器(AT), 手动/自动变速器,无级式变速器。
传动轴:传动轴总成由外万向节(RF节)、内万向节(VL节)和花键轴组成,RF节和VL节均为球笼式等速万向节。VL节用螺栓与差速器传动轴凸缘相连接,RF节通过外星轮端部的花键轴与前轮相连接,左、右前轮分别由1根等速万向节传动轴驱动。
主减速器:主减速器是汽车传动系中减小转速、增大扭矩的主要部件。对发动机纵置的汽车来说,主减速器还利用锥齿轮传动以改变动力方向。
汽车正常行驶时,发动机的转速通常在2000至3000r/min左右,如果将这么高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需很大,而齿轮副的传动比越大,两齿轮的半径比也越大,换句话说,也就是变速箱的尺寸会越大。另外,转速下降,而扭矩必然增加,也就加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可使主减速器前面的传动部件如变速箱、分动器、万向传动装置等传递的扭矩减小,也可变速箱的尺寸质量减小,操纵省力。 现代汽车的主减速器,广泛采用螺旋锥齿轮和双曲面齿轮。双曲面齿轮工作时,齿面间的压力和滑动较大,齿面油膜易被破坏,必须采用双曲面齿轮油润滑,绝不允许用普通齿轮油代替,否则将使齿面迅速擦伤和磨损,大大降低使用寿命。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。